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ABSTRACT

In this paper we propose a classification-based method towards the
segmentation of diffusion tensor images. We use Support Vector
Machines to classify diffusion tensors and we extend linear classifi-
cation to the non linear case. To this end, we discuss and evaluate
three different classes of kernels on the space of symmetric definite
positive matrices that are well suited for the classification of tensor
data. We impose spatial constraints by means of a Markov random
field model that takes into account the result of SVM classification.
Experimental results are provided for diffusion tensor images of hu-
man skeletal muscles. They demonstrate the potential of our method
in discriminating the different muscle groups.

Index Terms— Diffusion Tensor Imaging, Support Vector Ma-
chines, Kernels, Markov Random Fields, Human Skeletal Muscle

1. INTRODUCTION

Diffusion tensor imaging (DTI) is a modality that gives insight in
the diffusion properties of the water molecules within anatomical
tissues [1]. Several studies have investigated the possibility of us-
ing DTI in order to separate different structures according to scalar
criteria such as the principal direction of diffusion and the fractional
anisotropy [2]. However the problem of segmentation and classifi-
cation of diffusion tensors is still open and investigating the use of
common machine learning techniques like Support Vector Machines
(SVMs) can lead to include a priori knowledge about the structure of
the tensor field and to further assess the potential of DTI in discrim-
inating different anatomical regions within the human skeletal mus-
cle, leading to a better understanding and quantification of muscu-
lar diseases (myopathies) and their effects on water diffusion. While
previous studies focused mainly on using DTI to distinguish between
the regions of the brain, DTI muscle segmentation has lacked atten-
tion and remains a difficult issue since muscular fibers belonging to
some groups have approximately the same direction [3].

The existing methods of diffusion tensor segmentation and clas-
sification rely broadly on three techniques. Manifold learning tech-
niques [4] have been proposed in order to reduce dimensionality and
do the clustering in the induced low-dimensional space. However
most of these methods suffer from two shortcomings: they are un-
able to provide an explicit mapping from the high-dimensional space
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to the low-dimensional one limiting their use in the testing phase.
Besides, classification in the relatively high dimensional space may
yield better results as the data incur an information loss after dimen-
sionality reduction. Moreover, the unsupervised versions of these
algorithms may have unsatisfactory separation capability. Another
class of approaches consists in building a graph over the tensor field
using different variations of spectral clustering where segmentation
is based on the construction and the eigenanalysis of an affinity ma-
trix between fiber tracts [5, 6] or graph cuts using seed points [7].
However, while these methods try to learn the structure of the tensor
field from the data, they do not include prior knowledge or they re-
quire fiber extraction. The third class mainly relies on level-sets and
active contours and may lead to local minima [8, 9]. In this work,
we learn the diffusion tensors using linear and non linear SVMs. We
define specific kernels on the space of symmetric positive definite
matrices and use them for non linear classification. A Markov ran-
dom field (MRF) captures the scores resulting from the SVMs and
imposes spatial regularity. This is essential to account for the subtle
differences in the muscular fibers characteristics. We show experi-
mental results on diffusion tensor images towards segmentation of
the human skeletal muscle (calf).

2. OVERVIEW

Given diffusion tensor data, we train a Support Vector Machine clas-
sifier using segmented data to learn the diffusion tensors of differ-
ent muscle groups. To better capture the structure of the different
groups, we use specific kernels in the non-linear SVM framework.
During the testing phase, the SVM results are incorporated in a MRF
model to take into account spatial information as well as noise. The
remainder of this paper is organized as follows: in section 3, we de-
tail the SVM classification of tensors and discuss the link between
linear/non linear classification of diffusion tensors and the classifica-
tion on the statistical manifold of normal multivariate distributions
which leads us to define a family of kernels on the tensor space.
In section 4, we introduce the MRF framework and show how the
SVM scores can guide the segmentation while respecting the struc-
ture of the tensor field. Section 5 is dedicated to the assessment of
the kernels and to the experimental results for the segmentation of
the human skeletal muscle. In section 6, we discuss the perspectives
of this work.
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3. SVM CLASSIFICATION AND KERNELS ON TENSORS

3.1. Two-class Support Vector Machines

We briefly review the principles of two class SVMs [10]. Given
N points xi with known class information yi (either +1 or −1),
SVM training consists in finding the optimal separating hyperplane
described by the equation wtx + b = 0 with the maximum dis-
tance to the training examples. It amounts to solving a dual convex
quadratic optimization problem and each data point x is classified
using the SVM output function f(x) = (

�N
i αiyixxi) + b. The

algorithm is extended to achieve non linear separation using a kernel
function K(x,y)(symmetric, positive definite) that is used instead
of the standard inner product.

3.2. Linear classification of tensors

The binary linear classification of tensors belonging to two classes
C1 and C2 consists in finding a linear form φM : M3(R) →
R, φM(D) = tr(MtD) such that φM(D) ≤ b, ∀D ∈ C1 and
φM(D) > b, ∀D ∈ C2. We can understand this linear classification
as stemming from a marginalized kernel Fisher classification over
the space of random water displacements.

Indeed, we consider the diffusion tensor field as a family of
Gaussian probability distributions with zero mean over the set
R

3 of displacements. Thus the Fisher score [11] is given by
∇D log P (x|D) and indicates the direction in which D should
be moved to explain the displacement x and yields the following
kernel (on the set R

3) using the standard scalar product:

K(x,y) =< ∇D log P (x|D),∇D log P (y|D) >

We can verify that∇D log P (x|D) ∝ D−1xxtD−1. Starting from

an isotropic distribution �D = αId, we have ∇
�D log P (x|D) ∝

xxt. In order to define a kernel over the diffusion tensor field, we
average over all the possible displacements:

K(D1,D2) =

� �
K(x,y)p(x|D1)p(y|D2)dxdy

∝ < E(xxt), E(yyt) >

Knowing that E(xxt) = D1 and E(yyt) = D2 we conclude that
the kernel in the tensor space is given simply by K(D1,D2) =<
D1,D2 >, that is the Euclidean scalar product that defines the linear
classification.

We now extend this formulation to the non linear case by defin-
ing kernels that are specific to the space of symmetric positive defi-
nite matrices.

3.3. Information diffusion kernel

In order to define a kernel on the set of symmetric positive definite
matrices, we can propagate class and structure information using its
geometry as a Riemannian manifold [12]. Intuitively, we can see the
construction of this kernel as diffusing the labels of the training set
to the whole set of symmetric positive definite matrices. Therefore,
similarly to heat diffusion on a Euclidean space, where the solution
is given by the convolution of the initial condition by a Gaussian ker-
nel, heat diffusion on a Riemannian manifold is driven by a kernel
function Kt and given by the following asymptotic series expan-
sion [13]:

Kt(D1,D2) ∝ exp(−d2(D1,D2)

4t
)

∞�
n=0

an(D1,D2)t
n

where d corresponds to the geodesic distance induced by the Rie-
mannian metric, an are the coefficients of the series expansion and
t is the diffusion time, which is a parameter of the kernel. We use a
first order approximation in t of the previous expression that yields

Kt(D1,D2) ∝ exp(−d2(D1,D2)

4t
)

In our case, d has an explicit expression given by d(D1,D2) =��
i(log(λi))2 where λi are the generalized eigenvalues of D1

and D2 [12].

3.4. Bregman divergence kernels

Instead of using the geodesic distance in the information diffusion
kernel, one can instead use the Bregman divergence framework [14]
to define a rich class of kernels parametrized by a convex scalar
function φ : S3

+ → R that extend in a natural way the Euclidean
distance and therefore the standard Gaussian radial basis function
kernel. Knowing φ, one can define the corresponding Bregman di-
vergence Dφ between two matrices D1 and D2 as follows :

Dφ(D1,D2) = φ(D1)− φ(D2)− tr(∇φ(D2)t(D1 −D2))

The symmetrization of the divergence gives the following similarity

measure �D:

�Dφ(D1,D2) = tr((∇φ(D1)−∇φ(D2))t(D1 −D2))

It is clear that choosing φ(D) = 1
2
‖D‖2F where ‖.‖F is the Frobe-

nius norm yields the standard Euclidean distance. Therefore, we
extend the Gaussian radial basis function (RBF) kernel using the ex-
ponential embedding:

K(D1,D2) = exp(−γ �Dφ(D1,D2))

Two interesting cases of φ are the Burg entropy [Eq. 1] and the Von
Neumann Entropy [Eq. 2]:

φ1(D) = − log(det(D)) (1)

φ2(D) = tr(D log(D)−D) (2)

They induce the following kernels:

K1(D1,D2) = exp(−γtr((D1 −D2)(D1
−1 −D2

−1))

K2(D1,D2) = exp(−γtr((D1 −D2)(log(D1)− log(D2)))

These kernels provide global similarity measures that quantify the
differences between tensors both in eigenvalues and eigenvectors.
Note that the divergence that derives from Burg entropy can also
be obtained from a Kullback-Leibler divergence between Gaussian
distributions with zero mean [8].

3.5. Probability product kernels

The third kernel we will study is a probability product kernel [15].
We consider again the set of Gaussian probability distributions of
zero mean, two elements p1 and p2 of this set with D1 and D2 their
covariance matrices and the corresponding probability product ker-
nel:

K(p1, p2) =

�
p1(x)ρp2(x)ρdx =< pρ

1, p
ρ
2 >L2

where ρ is a positive constant. Note that the special case ρ = 1/2
coincides with the well known Bhattacharyya kernel. Replacing the
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probabilities p1 and p2 by their expressions gives the following ker-
nel:

K(D1,D2) = det(D1)
−ρ/2 det(D2)

−ρ/2 det(D−1
1 + D−1

2 )−ρ

This defines a Mercer kernel as the probability product kernel on
Gaussian distributions is based on the scalar product in L2 which
is a Hilbert space. This is an advantage over the two above-cited
classes of kernels which are not necessarily positive definite. Note
however that in practice, a thorough choice of the parameter γ will
ensure the positive definiteness in a statistical sense, i.e. the property
will hold with high probability [16].

4. MRF REGULARIZATION

The goal behind the use of an MRF model is two-fold: we aim at in-
cluding spatial information, i.e. tensors along the same fiber should
belong to the same class and we also try to minimize the effect of
noise during segmentation. Besides, the MRF framework allows to
use all the scores given by the SVMs, instead of making the labeling
decision by simply taking the maximum score. Therefore, we define
the following energy E to minimize:

E =
�

i∈Ω

us(l(i)) + λ
�

i∈Ω,j∈N (i)

up(l(i), l(j)) (3)

where Ω is the image domain, l(i) is the label of the voxel i,N (i) is
the considered neighborhood, us is the potential given by the SVM
scores and up is a pairwise potential that imposes spatial regularity.
We choose us(l(i)) = exp(−αfl(D(i))) which is a decreasing po-
tential in the score given by a one-against-all SVM classifier fl. If
the voxels i and j belong to the same axial slice, the pairwise poten-
tial up is set to

up(l(i), l(j)) = c(1− δl(i),l(j))

where c is a constant and δ is the Kronecker delta. If not, we choose

up(l(i), l(j)) = (1− 1

2

vtD(i)v

λmax(i)
− 1

2

vtD(j)v

λmax(j)
)(1− δl(i),l(j))

where v = i−j
‖i−j‖ and λmax(i) is the largest eigenvalue of D(i),

λmax(i) = max‖z‖=1 ztD(i)z . This potential is low for tensors
belonging to the same fiber. We propose two different costs because
muscular fibers have a privileged direction since they follow the di-
rection of the leg with a pennation angle. To minimize the energy de-
fined in [Eq. 3], we use the optimization algorithm proposed in [17].

5. EXPERIMENTS AND RESULTS

5.1. Kernels comparison

Magnetic Resonance DTI of human skeletal muscle (calf) was per-
formed on a 1.5T scanner with the following imaging parameters:
repetition time (TR)= 3600ms, echo time(TE) = 70ms, slice thick-
ness = 7mm and b value of 700s.mm−2 with 13 repetitions. Simul-
taneously, a high-resolution T1-weighted image was acquired and
manually segmented. To assess the behavior of the defined kernels,
we consider two muscle groups: the soleus (SOL) and the medial
gastrocnemius (MG). SVM classification was performed both in a
linear and a non linear fashion using the above-defined kernels.

We motivate the use of kernel-based SVMs by focusing on the
architecture of the soleus muscle. While the medial gastrocnemius

is a unipennate muscle (the fibers have one line of action), the soleus
is a bipennate one (the fibers have two lines of action) and exhibits a
richer structure. As can be seen in [Fig.1] where the principal direc-
tions of diffusion in the MG and SOL muscles are displayed as points
on the unit sphere, it is more natural and mathematically more sound
to trace the decision boundary while respecting the manifold struc-
ture, rather than using a hyperplane to separate the different classes
or flattening the manifold using the Gaussian RBF kernel. We com-
pared the behavior of the defined kernels in separating the MG from
the SOL using a set of 9904 diffusion tensors with approximately
the same number of tensors for each class (4976 tensors belonging
to MG, 4928 tensors from the SOL muscle). We subdivided this set
into a training set and a testing one to evaluate the generalization er-
rors (50% of the set for the training and 50% for the testing) . As
shown in [Table 1], the kernels that are specific to the space of sym-
metric positive definite matrices perform better than the linear clas-
sification both in the training and testing phases. The best result was
obtained for the information diffusion kernel with approximately 3%
of classification error. Note that the number of support vectors has
not increased much with respect to a linear classification.

Fig. 1. Principal directions of diffusion of SOL and MG in red and
blue respectively

Method Training er-
ror

Support
vectors

Testing er-
ror

Linear 5.27% 741 5.81%

Diffusion 0.26% 999 2.89%

Probability
product

3.77% 547 4.94%

Burg 3.23% 482 3.94%

V. Neumann 3.25% 494 4.05%

Table 1. Performance of the different kernels

5.2. Segmentation of the calf muscle with SVM-driven MRFs

Two different diffusion datasets were considered to evaluate the seg-
mentation algorithm, one for training and the other for testing. We
used SVMs in a one against all fashion to learn the diffusion ten-
sors of three major groups in the calf muscle: the soleus, the medial
gastrocnemius and a third group consisting of the lateral gastrocne-
mius (LG) as well as the muscles of the anterior compartment of the
calf. The learning was done on a manually segmented volume and
we tested the performance of the SVM+MRF algorithm using the
information diffusion kernel on another volume. As can be seen in
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[Table 2], the MRF regularization improves significantly the correct
classification rates with respect to a labeling decision based on the
maximum score, achieving a correct classification rate of approx-
imately 90% for each of the three classes. Qualitative results are
provided in [Fig.2] (MG, SOL, LG and the muscles of the anterior
compartment of the leg are displayed in red, yellow and green re-
spectively). We can see that while SVM classification can be misled
by noise, the combination of SVMs and MRF provides a smoother
result and decreases the number of misclassifications.

class 1 class 2 class 3

SVM 85.71% 82.53% 76.4%

SVM+MRF 88.64% 90.22% 88.42%

Table 2. Comparison of correct classification rates with and without
MRF regularization

Fig. 2. Obtained 3D segmentation in three groups with some mis-
classifications visible, axial slice of the baseline image with overlaid
segmentation for the ground truth, the SVM classification and the
SVM+MRF algorithm respectively

6. CONCLUSION

We proposed a framework for the segmentation of the human skele-
tal muscle. It introduces a priori knowledge about the diffusion ten-
sors belonging to different muscle groups combined with a spatial
regularization based on MRFs. It is possible to further extend this
framework to build kernels on entire fibers if we are dealing with a
tensor field with a more complex structure (brain fibers for exam-
ple). Considering naturally a fiber as a set of tensors one can use
the summation kernel to define a kernel on the fiber space or more
elaborate kernels on sets of features where mismatchings are taken
into account.

Another interesting direction of research is to learn the diffu-
sion tensors for different populations (healthy patients, ill patients
affected by different kinds of myopathies) and apply the proposed
classification framework to detect alteration in diffusion due to ill-
ness.
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